CAMBRIDGE

Abridge con

NOVEMBER 2002

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0652/3

PHYSICAL SCIENCE (EXTENDED)

Page 1	Mark Scheme	Syllab	· A
	IGCSE Examinations – November 2002	0652	10

Page 1		T	Mark Scheme	Syllab	".D.
ray	,,,,	+	IGCSE Examinations – November 2002	0652	8
		h			W. Papa Cambride
1	(a)		5.8-9.7	1	3
			metallic	1	
			acid	1	
	(b)		idea that mp depends on structure and idea that there are different structures	(1)	
	į.		gases (simple) molecular and metal giant (accept metallic)	(1)	max two marks here
			gases weakly bound and metals strongly bound or gases weak force and metals strong forces	(1)	
			idea of strength of metallic bond decreasing as the size of the ion increases => weaker electrostatic attraction	(1+1)	5
2	(a)		moment = force x (perpendicular) distance (accept F x d but not F x a)	1	· · · · · · · · · · · · · · · · · · ·
			80 x 30 or 80 x 0.3	1	
			2400 Ncm or 24 Nm (not N/cm etc. unit penalty)	1	
ing a single	(b) ((i)	rate of doing work / rate of transfer of energy / work over time or equivalent (not symbols unless defined)	1	
	. ((ii)	moment changes	1	
			distance changes	1	max 2
		-	forces changes	1	6

	Page 2			Mark Sch			Syllab
			IGCSE Exa	minations	- Novembe	r 2002	0652
- 3	(a)	(i)	-2 or 2-				ambridge.c
J	(a)	(i)	-2 OI 2-			. 4	OH OH
		(ii)	+3 or 3+		3	, 1	

3	(a)	(i)	-2 or 2-	1	
		(ii)	+3 or 3+	1	
		(iii)	FeCl ₃	.1	
		(iv)	add (aqueous) ammonia or an hydroxide	mmonium 1	mandatory
			green precipitate	<u>;</u> 1	
		ī	orange/red/brown precipitate	. 1	
	(b)		$Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$	formulae correct 1	
			$2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$	correctly balanced 1	
			$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$	•.	
	(c)	(i)	limestone /calcium carbonate	1	
		(ii)	to remove impurities from or	re 1	10
4	(a)	(i)	evidence of g→kg	 1	
			1.2 x 10 ⁻² N or 0.012 N* (12 N scores 1)	1	
		(ii)	as (a)(i)	1	
gl • •		(iii)	½ mv²	1	
			evidence of 0.2 squared	1	
		4	2.4 x 10 ⁻⁵ J*	1	
	(b)	(i)	mgh	1	
			3.6 x 10 ⁻³ J* ecf for mass from (a)(iii) allow 3.6 J if mass penalised	1 in (a)(iii)	

Page 3	Mark Scheme		Syllab
	IGCSE Examinations – November 2002		0652
			S
			Mytic
			10%
(ii	line of negative slope (curved or straight)	1	, con
	1 (0 (1)(1) 1)		
	passing through (0,(b)(i) value)	7	

		(ii)	line of negative slope (curved or straight)	1	
			passing through $(0,(\mathbf{b})(\mathbf{i}))$ value and $(1.5 \text{ s}, 0)$	1	
		(iii)	gravitational potential energy → heat (ignore mention of k.e.)	1	
			of air or fruit or explanation that k.e. not gained because constant speed	1	40
			*one unit penalty only for all the parts in this question		12
5	(a)		to remove excess oxide or MgO not "to remove solid or residue"		1
	(b)	(i)	calcium sulphate is insoluble / not possible to separate (from oxide) by filtering	•	1
		(ii)	add calcium nitrate (solution) to sulphuric acid		1
			filter	•	1
		a - *	dry residue by warming	•	1
	(c)	(i)	40 (ignore unit)	•	1
11	**	(ii)	0.2 (ignore unit)		1 [
		(iii)	0.2 mol H ₂ SO ₄ needed / ratio 1:1		1
			2 mol in 1000 cm ³ / vol = no of moles/concentration		1
			100 cm ³ or 0.1 dm ³ (unit penalty)		1.

		2
Page 4	Mark Scheme	Sy. per
	IGCSE Examinations – November 2002	065

					32
Page 4			Mark Scheme IGCSE Examinations – November 2002	Sy.	65. Ada Ser
			IGOSE Examinations - November 2002	0	65. Papacannbridge.com
6	(a)		mention of light	1	COM
			wave behaves as lenses /refraction of light rays etc	1	
	(b)	÷	use set up shown / project light on to screen		-
			measure distance between 2 light or dark bands		
	·	r	use of ruler / mention of middle or edges of bands		
			improved by using several bands	4 max	
			idea of need to work out scaling	max	
			freezing using strobe		•
	(c)		$v = f\lambda$	1	
			0.60 (or 0.5952) or 2.5/4.2	1	
			multiplication by 60	1	-
			36 (35.7) no unit penalty	1	10
7	(a)	(i)	СН₃ОН	1	mandatory
d _{et} -		(ii)	any shared pairs seen	1	
			all shells filled (each $H-2$, C and $O-8$)	1	
•		(iii)	same functional group (OH) / same general formula (C _n H _{2n+2} O) / undergo similar reactions/ all alcohols/ similar chemical properties	1	

Page 5	Mark Scheme	Syllabu
	IGCSE Examinations – November 2002	0652
		S
		177%
		The state of
		Se .
		.62
(b) (i)	$C_2H_4 + H_2O \rightarrow C_2H_5OH$ formulae correct 1	1+1

(b)	(i)	$C_2H_4 + H_2O \rightarrow C_2H_5OH$	formulae correct 1	1+1
			correctly balanced 1	

(ii) high temperature not "heat"

catalyst

high pressure not "pressure"

(c) (catalytic) cracking of alkanes 1

8
$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} \text{ or } R_p = \frac{R_1 R_2}{R_1 + R_2}$$

 $R_p = 4 \Omega$

 $R_t = 12 \Omega$ (or $8 \Omega + R_p$ value) ecf wrong R_p 1

V = IR (or arrangement)

I = 0.5 (A) ecf 1

V = 2 (V) ecf

6

or any equivalent method with including 2 marks for relevant equations - answers alone gain two marks

Page 6	Mark Scheme	Syllab
	IGCSE Examinations – November 2002	0652
		80
		M
		The
		96
9 (a)	oxide forms layer which bonds to aluminium (or	CON
(,	layer is tough and impermeable)	1
	,	

9 oxide forms layer which bonds to aluminium (or (a) layer is tough and impermeable) 1 rust (iron oxide) flakes of leaving another exposed surface/ rust traps water and air(O2) in contact with iron 1 (b) amphoteric oxides dissolve in alkalis 1 NaOH removes(dissolves) oxide (layer) / Al reacts with NaOH (c) (i) bauxite (ii) Al too (allow "very") reactive / bond with oxide too strong / too much energy is needed / carbon is not reactive enough to reduce aluminium oxide 1 not "it is more reactive" 6 10 (a) induction 1 changing 1 primary 1 voltage (b) $N_s/N_p = V_s/V_p$ or equivalent 25 (ignore any unit) 1 6 Total 80